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Almtr~'t--A two-fluid model of multidimensional laminar bubbly two-phase flow is developed and used 
to analyze vertical pipe flows. A Galerkin finite element method is utilized to perform the numerical 
evaluations. Good agreement is found with the available data when adequate models for the lateral lift 
force and wall force on the dispersed phase (i.e. the bubbles) are used. 
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I N T R O D U C T I O N  

A fundamental problem in multiphase flow is the prediction of the velocity and phase distribution 
for laminar bubbly two-phase flow in a pipe. Significantly, even for this well-defined problem no 
analytic solution has been developed which successfully predicts the data. Experiments performed 
by Nakoryakov et al. (1986), show a strong tendency for the bubbles to collect near a vertical pipe 
wall for cocurrent upflow. In contrast, for cocurrent downflow, no bubbles were found for a finite 
distance away from the wall and a relatively flat void profile was observed in the interior of the 
pipe. The purpose of this paper is to present a two-fluid model of laminar bubbly flow which 
predicts the observed void profiles for both cocurrent upflows and downflows. 

This paper presents a new model for the force acting on a bubble near a wall. This wall-force 
prevents the bubbles from touching the wall. It is analogous to a lubrication force, i.e. the 
hydrodynamic force which floats a journal in its bearing housing. The main effect of the wall-force 
was to assure the zero void condition found experimentally near vertical walls, while not 
significantly effecting the phase distribution away from the wall. 

In a previous study by Achard & Cartellier (1985) a two-fluid model was used to predict the void 
profile for laminar bubbly cocurrent upflow in a pipe. In their study the region near the wall was 
neglected and an analytical solution for the void fraction profile in the "core" region of  a pipe was 
derived. Since all wall region phenomena were neglected the predicted void profile peaked at the 
wall rather than approached zero. Achard & Cartellier (1985) concluded that another kind of  
transverse force which repels bubbles away from the wall was needed. 

Experimental work done by Valukina et al. (1979) has shown that the laminar bubbly flow void 
distribution problem can be quite complicated. For example, they found that by changing the 
bubble diameter, peaking of the void fraction near the wall may or may not occur. 

The present study assumes that the flow is "laminar" (i.e. ReL < 1500) and the local void fraction 
is low enough (e.g. E < 10%) so that the cell model, to be discussed shortly, is valid. The analysis 
also assumes that the bubbles can be treated as spheres in the development of the various lateral 
forces. 

T W O - F L U I D  M O D E L I N G  

The analysis of  multiphase flow can be done at various levels of complexity. These levels range 
from the use of  homogeneous flow models to multidimensional two-fluid models. Among these 
models, the two-fluid formulation is considered to be the most accurate because of  the explicit 
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treatment of the interaction between the phases. The two-fluid model is developed by first 
considering the conservation equations of each phase separately. Through the use of appropriate 
averaging techniques these conservation equations can be used to represent the macroscopic field 
of each phase. However, in the process of averaging, important characteristics of the flow field are 
lost and must be reintroduced into the model via appropriate closure laws. For this analysis, the 
two-fluid model proposed by Ishii (1975) was used. The general form of the two-fluid model for 
adiabatic air-water flow can be written as 

and 

~ ( E k P k )  

~t 
- -  + V" (EkPkVk) = 0 [I] 

~(EkPkVk) 
- -  "q- V "  (EkPk Vk Vk ) = - -£k  V p k  ~1- V • [£k(,~k ..~ ~,T)] .j¢. (Pki -- pk)Vq 

at 

-k £kPkg q- M~ - zki" VEK" [2] 

Here the subscript k denotes phase k (l = G for the gas phase; k = L for the liquid phase) and the 
subscript i stands for the value at the interface between the two phases. The time-averaged density, 
velocity, pressure, volume fraction, viscous shear and bubble-induced turbulence are given by Pk, 
Vk, Pk, q ,  tk and z,z, respectively. The time-averaged interfacial momentum exchange, velocity, 
shear and pressure are denoted by Mt~, %, t~ and p~, respectively. 

For fully developed adiabatic air-water bubbly flow in a pipe the continuity equation reduces 
to the trivial solution of no net radial (r-direction) motion (i.e. vo = VL = 0). The time derivative 
and convective terms in the momentum equations are also zero for fully developed steady flow, 
thus the phasic momentum equation becomes: 

- - ( 'k  V p k  "1- V " [('k('l~k "~- 'lIT)] "[- (Pki -- Pk)VEk + EkPkg "+ Mki - ~ki " Vq = O. [3] 

In the gas phase several additional simplifications can be used. For example, due to the relatively 
small viscosity and density of the gas phase compared with the liquid phase, the total shear and 
the (Pc,-  Po) terms can be neglected. 

Substituting these assumptions into [3] and noting that E = Eo = (1 -EL) yields: 

and 

0 = - E VpG + EPo g + M o i  [4a] 

0 = -(1 - E)VpL + V" [(1 - E)[XL + ~:[)] + (Pti-  pL)V(1 -- £) 

+ (1 -- E)pL g + MLi -- ~ti" V(1 -- E). [4b] 

At this point closure laws are required to relate terms such as 1Vl~ i, MLi, ,T, (PLi--PL) and *Li to 
the state variables VL, VO, PG, PL and E. These constitutive equations (i.e. closure laws) must be 
accurately modeled for the two-fluid formulation to be useful. Except for the interfacial drag law, 
ceU models (Nigmatulin 1979) were used in conjunction with potential flow theory to develop each 
closure law. Basically, the inviscid solution for flow around a sphere was used to approximate the 
flow around the bubbles in the flow field. A spherical cell was assumed to be centered around each 
bubble and extended into the liquid flow field so that the volumetric average of the gas phase to 
the total ccU volume was equal to the local void fraction. By geometry the radius of the cell,/~,, 
can be related to the void fraction and bubble radius, Rb, through (Nigrnatulin 1979): 

Rb 
= [5] 

A limited discussion of each closure law used in this analysis will bc given below. For a more 
detailed treatment of any particular model the reader is referred to the references cited. 
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The interfacial momentum exchange, Me, can be partitioned into three terms: the axial 
interfacial drag, Mdi; the lateral lift-force, M~; and the wall-force, M w. The interfaeial drag law 
was taken from Ishii & Mishima (1984): 

where 

3 E 
= - M L  . . . .  C D p L ( V ~  - -  VL)IV~ - -  VLI, [6] 

8 Rb 

9 A  
C D = ~ (1 + 0.1 D.o.75x 

Ke2 4, 

and 

2RbPL (V G --  VL) 
Re2~ = 

gm 

~L 
/~m ----" (1 - - E ) "  

The lift-force on a bubble has been previously calculated by Drew & Lahey (1987) and Zun (1980). 
This force is perpendicular to the rotation vector and the bubble's velocity vector. The general form 
for the lift-force can be written as 

M~ = --ML L = CL£PL(¥ L - -VG) X (V X VL). [7] 

Here CL is the lift coefficient and can range from about 0.01 to 0.5 (Wang et al. 1987). 
When a rising bubble comes in close proximity to a wall the normally uniform drainage of the 

fluid around the bubble changes dramatically. The no-slip condition at the wall slows the drainage 
rate between the bubble and the wall which in turn increases the drainage rate on the opposite side. 
The net effecxt of this asymmetry is to create a hydrodynamic force which acts to drive the bubble 
away from the wall. Unfortunately, no analytical three-dimensional solution of the flow between 
a bubble and a wall is available to describe this phenomena. However, an approximate 
two-dimensional solution can be derived for flow between a cylinder and a wall. This solution was 
used to deduce the functional form of the wall-force on a sphere. Appendix A presents the details 
of the derivation of this wall-force and shows that it is of the form: 

where 

MW = -MW = Rb L ~''wl + Cw2 nw, 

ull = (v¢  - VL) - -  [nw" (vc~ --  VL)lnw 

[8] 

and 

Cwl = --0.104 - 0.06Ug 

Cw2 --- 0.147. 

Here Y0 is the distance between the bubble and the wall and nw is the unit outward normal vector 
on the surface of the wall. 

The next closure laws which require modeling are the viscous and bubble-induced shear stresses, 
~L and C ,  respectively. A Newtonian shear law was assumed for the viscous shear stress in the 
liquid phase. The bubble-induced turbulence accounts for the perturbations of the liquid flow 
around each bubble due to fluid displacement. To obtain this perturbation the potential flow 
solution for flow around a sphere was divided into the macroscopic mean motion and the induced 
pseudo-turbulent fluctuations. A detailed cell model derivation of this term has been given 
previously by Nigmatulin (1979): 

,r[=_EpL[~IVG VLI21 I - -  + ~ (VG --  VL) (VG --  VL)]. [9] 
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The next closure law required for this analysis is a model for the term which relates the 
area-averaged interfacial pressure to the spatial average pressure of the liquid phase, (PLi --PL). This 
term represents a Bernoulli effect in the liquid flow field. Near the side surfaces of each bubble the 
local fluid speed is higher than the far field speed due to the deflection of the flow around the bubble. 
The Bernoulli equation implies that this increase in speed is accompanied by a decrease in the local 
pressure. Thus, the average pressure on the surface of the bubble is less than the far field pressure. 
Stuhmiller (1977) used the potential flow solution for flow around a sphere to deduce that this 
pressure difference is 

PLi - -  PL = --¼PL(I -- E)IVG -- VL 12. [10a] 

In contrast, to a good first approximation, 

Poi -- Po = 0. [10b] 

Another closure law required for this analysis is to relate the local gas phase pressure to the local 
liquid phase pressure. This can be done through a momentum jump condition across the interface. 
The pressure difference can then be grouped into three parts: the pressure difference, Pc~ - P o ,  in 
the gas phase; the pressure difference, P o i -  PLi, across the gas-liquid interface; and the pressure 
drop in the liquid phase, PL~ --PL. AS noted in [10b] the pressure difference in the gas phase is small 
and can be neglected. By assuming spherical bubbles the pressure change across the interface is 
accounted by the surface tension, a. Equation [10a] can be used to account for the pressure change 
in the liquid phase. Combining these terms results in the overall gas to liquid phase pressure 
difference: 

(PG --pOI = Rb -4- (PLi - -pL) I  --XLi. [1 la] 

Two assumptions for the interracial shear stress tensor, t a ,  are commonly used. Either this term 
is set equal to zero, or it is assumed to be equal to the total shear stress in the liquid at the surface 
of the bubble (i.e. ZLi = XL + ~ ,  evaluated at the surface of the bubble). Let us assume that the 
interfacial shear stress tensor, ZLi, can be constituted using a Newtonian shear law and [9] evaluated 
at the interface: 

XL, = #LVVL -- p L I 3  ]Vo -- VL,2 I + 1 (Vo -- VL) " (VG-- VL)I 1 . [llb] 

Substituting [9] and [1 lb] into [1 la] yields the momentum jump condition: 

I 2a (Po --PL) = ~ I -- lpLIV o -- VLI2(1 -- e)I -- IZLVVL + ½pLIVO - VL[2I 

+ ~(VG -- VL)" (Vo -- VL)I. [1 lC] 

With all the closure laws specified, the complete description of the two-fluid model of steady 
laminar bubbly flow can now be written as: 

gas phase momentum, 

3E 
- - £ V p G  -k EpGg - -  8 K  CDPL(VG - -  VL)IVG --  vL] - -  CLEPL(VG - -  vL) X (V X VL) 

4 ~PLIUNI2[ c w ' + R b  Cw2(y~) lnw=0;  [12a] 

liquid phase momentum, 

- (1  - E)VpL + V" {(1 - ~) [#LVVL -- EpL(SIVo -- VLI 2 I + ~0(Vo -- VL) (VG -- VL))]} 

--¼PLIV o -- VLI2(1 -- E)V~ + (1 -- E)PLg + CLEPL(VL - -  VG) X (V X VL) 

3 ,  
Rb L "~w' + Cw2 nw "k 8 K CDPL(VG -- VL)IVG -- VL I 

- [~LVVL -- PL [2~IVo -- VLI2I + ~0(Vo -- Vl.)' (Vo -- VL)]] " V~ ---- 0; [12b] 
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a n d  

interface jump condition, 

2a 
¼PLIV  (PG - pL)I = Rbb I -- -- V L 12 (I -- e)I --/~L VVL + ~0 PL l V~ -- VL 12 1 

+ ~0(V~ -- VL)" (Vo -- VL)I. [12C] 

Note that the last term in [12b] represents a force due to interfacial shear stress. As stated earlier, 
this term was modeled in two ways; either it was set equal to the total shear stress (as written) or 

was set equal to zero. 
The boundary conditions for steady fully developed laminar bubbly flow are as follows: 

• No-slip condition at the wall for the continuous phase (i.e. we assume it is the 
liquid which wets the wall). 

• The channel-average void fraction, (E >. 
• The axial pressure gradient, ~pt/OZ = ~pG/~Z. 

Note that a no-slip condition at the wall for the vapor phase cannot be prescribed since vapor 
viscosity has been neglected. 

It is also worth noting that the local void fraction at the pipe wall was not included in the set 
of boundary conditions even though experimental data shows that zero void fraction occurs at the 
wall for bubbly flows. In the next section it will be shown that prescribing the wall void fraction 
results in an overconstrained set of equations. Indeed, zero wall void fraction, which has been 
observed experimentally, is a natural result of the force on the bubbles rather than being applied 
as a boundary condition. 

NUMERICAL SIMULATION 

Since an exact solution of the set of nonlinear partial differential equations given by [12a-c] is 
not possible, a numerical method was required. The Galerkin finite element method was chosen 
since it provides a robust procedure for solving differential equations of the boundary value type. 
The procedure employs subdivision of the solution domain into many smaller regions and uses 
approximation theory to quantize the behavior of the equations over each finite element. To better 
understand the finite element simulation the conservation equations have been rewritten explicitly 
for the axisymmetric cylindrical geometry shown in figure 1: 

t~p~ = epog 3 e 
e - ~ -  z - - - ~ C D P L  URIURI, 

EPLV [Cw, t~PG _ __ CLC.PL UR ~ + 
E ~r -- Rbb 

[13a] 

[13b] 

z 

Yo 

= y  

Figure I. Axisymmetric pipe for numerical simulation. 
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63UL] 3 E _ _ _ _  
(1--E163PL=lO63Z r 63r r(1 --E)/~L--~-r +-8-~b cDURIURI+(1-e)pLg"+#L OUL&or 63r' [13cl 

(I -- E) 63pL = 6 3  2 6& 
Or 63r [~0pLC(1 -- e)U~] + CLepL U. ~ + ¼PL(1 -- e ) V . N  

+ - - ~ b  Cw, + Cw2 - - 3 p L U ~ r  [13d] 

and 
2a 2 & 

PG --PL = ~ -- ¼(1 -- e)p L U R ~  r . [13e] 

Here UR is the relative velocity in the axial direction and UL is the axial velocity of the liquid phase. 
By combining [13b], [13c] and [13e] the radial gas and liquid pressure gradient can be eliminated, 
resulting in an expression which describes the radial void profile. This does not effect the accuracy 
of the solution and the lateral pressure field can be recovered as a post-processing step. The 
simplified set of equations which can be used to solve for the velocity and void profile are" 

63pG 3 e 
e ~ = el0 G g -- ~ K CD PL UR [UR I, [14a] 

~rL 1 6 3 [  . 63UL-] 3 e 63UL6& 
( l - - e )  -- L=rffr r(1--e)I~L--ff~-rJ+-~--~bCLURIURI+(1--e)pLg-F/~ L 63r 63r [14b] 

and 

63uL _ ½e(1 - E)U~ & ¢~rr 63 [23E(1 -- ¢)PL U21 -- CLPLeUR'-~-r --63r 

e p L U 2R F (-~00 ) ] 3 2 63e 
K L Cw'+Cw2 +~EpLUR~r=O. [14c] 

At this point it should be noted that the void fraction in [14a] can be cancelled from each term 
leaving an algebraic expression for the relative velocity, UR. Since the axial pressure gradient is 
constant for fully developed flows, the relative velocity will be constant for uniform bubble size. 
Therefore, for a given axial pressure gradient, 63pa/63z, [14a] was used to evaluate the relative 
velocity. 

The remaining equations, [14b] and [14c], require three boundary conditions as specified below. 
The axial liquid momentum equation [14b] is a second-order elliptic partial differential equation 

and therefore requires two boundary conditions. One of the boundary conditions to be applied is 
the no-slip condition at the wall. The combined vapor and liquid transverse momentum equation, 
[14c] is a first-order differential equation and can satisfy one boundary condition. For this analysis 
the average void fraction in the pipe, (E), was chosen for the boundary condition. 

If the wall void fraction is also specified then [14c] is over constrained and in general does not 
have a solution. The wall void fraction can be obtained by taking the limit of [14c] as Y0 (i.e. the 
local distance from the wall) approaches zero. It should be noted that since Y0 is the distance from 
the bubble's center to the wall it is limited by the bubble radius. However, since the bubble radius 
is very small compared to the pipe diameter the limit of Y0 approaching zero is useful in physically 
explaining the behavior of the void profile near the wall. If we assume that the void fraction and 
velocity profiles are well behaved (i.e. not multivalued functions) then the only term which can be 
very large is the wall-force. Applying the limit to this term yields: 

( lim_Cw:eP--LU~Rb~ lim Cw2 =0.  [14d] 
y0-0\ Rb Yo ] yo-O Yo ] 

Since, as discussed previously, the relative velocity is a constant then the local void fraction must 
approach zero at a rate >Y0 in order to satisfy [14c] and [14d]. The solution of zero void fraction 
automatically satisfies [14c] since the void fraction appears in each term. Physically, zero void 
fraction is the single-phase case where no transverse forces are present. Therefore, we find that zero 
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wall void fraction is a natural result of the lateral forces rather than an imposed boundary 
condition. 

F INITE ELEMENT ANALYSIS 

In order to numerically evaluate [14b] and [14e], they were discretized by a finite element method 
and used to update the radial liquid and void fraction profiles. 

The theory behind the Galerkin finite element method is available in many texts (e.g. Wait & 
Mitchell 1985) and will not be repeated here. Only a brief outline of the method for this particular 
application will be presented below. 

Linear basis functions were used to approximate the liquid velocity and void fraction profiles. 
The pipe was divided into N elements over which the variables were defined by 

and 

N 

UL = E ULnOn [ 1 5 a ]  
n = l  

N 

e = ~, e,0,. [15b] 
n = l  

Here 0, is a linear hat function with coefficients given by UL, and e,. Employing the procedure for 
the Galerkin finite element method [14a-d] were multiplied by a weight function, W, and integrated 
over the domain of interest. Next, each integral was divided into a sum of integrals over each finite 
element, this results in the following set of equations: 

( 1 - Q  W d A  = r ~  r (1--Q#L WdA 
n = l  n n = l  n 

fA 3E-'o fA ;A {~uL~('#L~r~r } + -~.CDURIURIWdA + (1 - e ) p L g W d A  + WdA [16a] 
n n 

and 

0 [~e(1 --E)pLU2]WdA -- CLPL£UR~ r WdA - ½e(1 - -e )UR~ r WdA 
n ~ l  n n n 

f - , ,, , +Cw2 WdA + ~"~£pLUR WdA =0.  [16b] 
,/An -"b L 

The definitions of the variables Ue and e, given by [15a, b] were introduced into [16a, b]. The 
integration was then performed element-by-element with the results summed together so as to 
satisfy [16a, b]. In order to obtain a linear set of algebraic equations a standard Newton-Raphson 
linearization technique was used on any nonlinear term. 

Next, the boundary conditions were imposed on the set of discretized algebraic equations. 
The particular boundary conditions appropriate for this analysis are 

and 

ULI = 0 

N + I  

E A.E. = R<E>, 
n = l  

where UL~ is the liquid phase velocity at the wall and (e )  specifies the global void fraction in the 
pipe; the element spacing is given by A, and the pipe radius by R. 

The final step in the numerical simulation was to solve the discretized algebraic equations along 
with their boundary conditions. Since the number of equations involved in this simulation is 
relatively small, a direct matrix inversion technique was used. The basic form of the resulting 
matrices was tridiagonal for the cases considered here. Therefore, a classic forward elimination and 
backward substitution technique was used to invert the matrix. 
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Table 1. Experimental data for laminar bubbly flow (Nakoryakov et al. 1986, 1987) 

Area average 
Pipe dia Liquid phase Bubble dia void fraction 

Fluids Pressure (cm) Re (mm) (~)  

Air-water Atmospheric 1.5 1267.0 0.87 1.9% 

In practice, [16a] and [16b] were alternatively solved using guessed values for the liquid phase 
velocity and void fraction and then updated. After the first few attempts at this method it became 
obvious that a very strong coupling existed between the velocity and void fraction fields. Without 
any two-dimensional or temporal terms (particularly the virtual mass force) oscillations quickly 
developed and the solution diverged. In order to control this coupling without adding artificial 
terms underrelaxation was used in the void profile calculation. 

R E S U L T S  

Accurate experimental data for laminar bubbly air-water flow is very limited. One available set 
of data has been reported by Nakoryakov et al. (1986, 1987). Unfortunately, most of the data was 
taken at higher liquid phase Re values (i.e. > 2000). One data set was taken at a liquid Re = 1276 
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Figure. 2. (a)Void fraction profile for cocurrent upflow; Re L = 1276, P0 = 1 atm, U R = 0.1 m/s. (b) Liquid 
velocity profile for cocurrent upflow; Re L = 1276, Po = 1 atm, UR =0.1 m/s. (c)Liquid pressure profile 

(Po--PL) for cocurrent upflow; Re L = 1276, P0 = 1 atm, U R = 0.1 m/s. 
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and was used to test two-fluid model predictions. The important geometrical and controlling 
parameters for this lower Re data set are given in table 1. 

The lateral lift coefficient ranges from 0.01 to 0.5 (Wang et al. 1987). For the conditions of this 
experiment a value of 0.1 appeared to be appropriate and was used. 

Figures 2a-c show the numerical results for the cocurrent upflow case listed in table 1. Note that 
for this case the interfacial shear stress, *Li, was set equal to the total shear stresss at the surface 
of the bubble in the liquid phase. As shown in figure 2a, the void fraction profile is strongly skewed 
toward the wall. The experimental data taken by Nakoryakov et al. (1986) are also shown in 
figure 2a. The predicted profile agrees quite well with the trends found experimentally. However, 
one discrepancy worth noting is that the location of zero void fraction is predicted at an r / R  of 
about 0.96, while the experimental measurements show the void fraction goes to zero closer to the 
wall. This is just a consequence of using a discrete approximation of the continuous two-fluid 
model's partial differential equations. The cell model was developed for a bubble near a wall, 
however, the resulting net force is assumed to occur at the center of the bubble. Therefore, errors 
up to the size of the cell model are inherent in the model. 

Figure 2b compares the liquid phase velocity profile predicted by the two-fluid model against 
measured data. The void peaking near the wall creates a high shear rate in the liquid phase near 
the wall. In fact, the liquid velocity profile is rather similar to a turbulent single-phase velocity 
profile. That is, a small boundary layer exists near the wall followed by relatively uniform velocity 
in the interior of the flow field. Figure 2c shows the predicted liquid pressure field. The pressure 
field was determined during post processing of the velocity and void results. Appendix B details 
a derivation of the pressure calculation. The lateral pressure profile presented in figure 2c shows 
a local pressure reduction near the wall where the peak void fraction occurs. This pressure "well" 
near the wall is similar to what happens in turbulent two-phase flows in which the shear-induced 
turbulence creates a local pressure decrease where the velocity fluctuations of the continuous phase 
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Figure 3a. Void fraction profile with the without the interfacial shear model; Re L = 1276, P0 = 1 atm, 
UR = O. 1 m/s. 
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are the largest (Wang eta/.  1987). It should be noted that the location of the peak void fraction 
occurs where the lift-force is balanced by the wall-force. Moreover, the magnitude of the void 
fraction at the peak location is controlled by the bubble-induced turbulence level and the local 
Bernoulli effect (i.e. the (Pgi--PL) term of [4b]). The Bernoulli effect causes a decrease in liquid 
pressure near the sides of the bubble due to the increased liquid velocity there. Therefore, at higher 
void fractions the Bernoulli pressure difference is small and a higher cell-averaged pressure is 
predicted. However, the combination of both the bubble-induced turbulence terms, ~L T and tLTi of 
[4b], dominate the Bernoulli eflect and a net pressure reduction results for the case shown. 

The same test case was rerun with the interracial shear term, Zgi, set equal to zero. A comparison 
of the results with and without the interracial shear term is shown in figures 3a-c. In figure 3a, 
the void fraction profiles are compared. It can be noted that the effect of the interracial term is 
to increase the peak void level but not change its location. This effect can also be seen in [14c]. 
The last term on the l.h.s, represents the contribution from the interracial shear. Since it only 
contains the spatial derivative of the void fraction it can only modify its gradient. The location 
of the peak can be determined from a balance of the lift and wall-forces. Balancing these terms 
gives 

2 6~'L_ PLI~'f2£ [Cwl _i - Cw2(~ob)l" CLp L Up.(. (~r Rb 

However, this equation cannot be solved directly since the liquid velocity must be given by [14b]. 
The velocity profiles, figure 3b, are nearly identical for both modeling assumptions. The major 

difference can be seen in the local pressure profiles given in figure 3c. Without the interfacial shear 
term the bubble-induced turbulence term, ~L T, cannnot dominate the Bernoulli effect. Therefore, 
as shown in figure 3c, a local pressure increase is predicted where the void fraction profile peaks. 
This result is in agreement with simulations of turbulent phase distribution phenomena (Lopez 
de Bertodano et al. 1990). 

A sensitivity study to the value of the lift-force coefficient used is presented in figure 4. The 
coefficient of [7] was varied from 0.05 to 0.15. As expected, the larger the value of the coefficient 
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the closer to the wall the peak void fraction occurred. This new peak void fraction location 
represents a re-balancing of the larger lift-force with an equally larger wall-force. It is interesting 
to note that since the bubbles are "closer" to the wall for the larger lift-force coefficient and the 
same number of bubbles are present then the peak value of void fraction must increase. This peak 
value of void fraction varied from 6.0% for the 0.05 lift-force coefficient to approx. 7.5% for the 
0.15 lift-force coefficient. 

Another numerical simulation was performed using the conditions in table 1 for a vertical 
downflow run. The same lift and wall-force coefficient were used as for the run shown in figure 3. 
The results of the downflow simulation are shown in figures 5a-c. The predictions show void coring 
in the interior of the pipe and a zero void fraction near the wall. For cocurrent downflow, both 
the lift and wall-force are directed toward the center of the pipe and therefore no wall-peaking in 
the void profile is observed. These same trends have been observed in turbulent bubbly flow 
experiments by Wang et al. (1987) and Nakoryakov et aL (1987). Unfortunately, laminar bubbly 
downflow data was not available, but similar trends are expected. 

S U M M A R Y  A N D  C O N C L U S I O N S  

A two-fluid model of laminar bubbly two-phase flow was developed in order to predict the phase 
distribution in a circular pipe. The use of a two-fluid model allows a detailed description of the 
lateral forces acting on the bubbles to be developed. For fully developed laminar bubbly flow two 
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forces are shown to control the void fraction profile, they are: a lateral lift-force and a wall-force 
(appendix A). The lift-force is similar in nature to the aerodynamic lift of an airfoil, but differs 
in that it is the result of a gradient in the velocity field over a symmetric bubble rather than a 
uniform flow over an asymmetric airfoil. The wall-force acts to keep the bubbles away from the 
pipe wall. This wall-force is analogous to wall forces in lubrication theory. 

Numerical simulation of the two-fluid model using a finite element technique showed that the 
balance between the lift and wall-force determines the void fraction profile. For upflows of positive 
buoyant bubbles the lift-force is directed toward the wall while the wall-force keeps the bubbles 
away from the wall. The result is a local peaking of the void fraction near the wall. For downflow 
of positive buoyant bubbles both the lift- and wall-force are directed toward the center of the pipe. 
As a result, no peaking of the void fraction is predicted. The peaking of the void fraction near the 
wall has been observed in experimental measurements of both laminar and turbulent two-phase 
bubbly upflows. The flat void profile in the interior of the pipe has been observed in turbulent 
two-phase bubbly downflows and is expected to occur in laminar flows as well. 

The level of the peak void fraction was found to be controlled by the bubble-induced turbulence 
and the Bernoulli, (Pu--pL)VE, terms. The bubble-induced turbulence tends to resist the increase 
in void level while the Bernoulli effect reinforces the buildup. However, the net effect of these terms 
is to resist the increase in void level. 

Unlike single-phase laminar flow the radial pressure profile is not uniform. Depending on the 
model used for the interfacial turbulence term, ~u, the local pressure was found to either increase 
or decrease as the local void fraction increased. Unfortunately, experimental data was not available 
to clarify the actual trend in the pressure profile. Clearly more experimental work is needed to 
properly assess the models used in this analysis. 
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A P P E N D I X  A 

Derivation of the Wall-force 
While an exact analytic expression has not yet been found for the hydrodynamic force on a 

moving bubble near a fixed wall, an estimate can be obtained in the following manner. 
Consider the flow past two cylinders moving at velocity U, whose radii are R0 and whose centers 

are separated by a distance 2y0. If a circulation of equal but opposite strength, F, is placed on these 
cylinders, the streamlines have the pattern shown in figure A1. By virtue of symmetry, the line of 
y = 0 can be taken as a fixed boundary so that the half of the plane represents the flow past a 
cylinder moving along a fixed wall. The flow field is approximated by the complex potential 
function 

f (Z l_iyo L~'yol ) t-~'F" [Z-iyo,-]\z:_t_zYo/d o~ = U Z + Ro 2 + ~---:--:--. + ' n l ~ - - - - : - ' T l l .  [A. I ]  

The circulation gives rise to a force which acts away from the wall transverse to the main flow 
stream. The calculation of this force is greatly facilitated through the use of Blasius's theorem, 
which is given by 

X + i~ = --~ ~k, dZJ dZ. [A,2] 

Y 

Figure A1. Streamlines of flow past two cylinders with an applied circulation. 
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Substitution of [A.1] into [A.2] and application of Cauchy's residue theorem leads to the result: 

= 2npL U 2 1 + 2y2o ] 4y3o 2y-~--U2 . [A.3] 

Inspection of [A.3] shows that if the circulation is set equal to zero the resultant force is directed 
toward the wall and is due to the increased velocity between the wall and the cylinder. The force 
component due to the addition of circulation can therefore be considered as the potential flow 
equivalent of the force arising from the viscous slow down of the fluid between the wall and the 
cylinder due to the no-slip condition on the wall. 

The strength of the circulation is determined so that the liquid velocity on the surface of the 
bubble satisfies the no-slip condition where the bubble touches the wall and approaches the free 
stream value when the bubble is far from the wall. That is, when the cylinder is far from the wall 
the circulation applied is zero and when the cylinder touches the wall the liquid velocity at the point 
of contact satisfies the no-slip condition. The axial liquid velocity (UL) along the z = 0 axis of figure 
A1 is given by 

UL= - -U 1 + 0 '  --Yo) ~ - ~  (Y +Yo) - - - - - ~ +  U(y -Yo) U(y +Yo) " [A.41 

Here UL is the liquid velocity in the axial (z) direction and y is the distance from the wall. 
Let us make the choice, 

gg+l(3U - u ~ )  
F = 2yg ' [A.5] 

where n is a constant to be evaluated later. Combining [A.5] with [A.4] yields 

R~ R2o R~+'(3U-uo)  Rg+'(3U-u~). l  
UL= --U 1 + ( y  - y o )  2 t (Y~Yo) ~ U2yg(y -Yo)  2Uyg(y +Yo) _l" [a.6] 

Far from the wall (y~oo;  Yo = Y + Ro) the liquid velocity approaches the free stream value: 

lim UL = -- 2 U. 

When the cylinder touches the wall 0' = 0; y0 = R0) the liquid velocity at the point of contact 
becomes 

U L ~ - - U G .  

This is the no-slip condition in our frame of reference. That is, for our Lagrangian point of view 
the bubble is stationary and the wall is traveling at a velocity of -uG. 

@ 
Figure A2. Integration of the "thin slice" wall-force over a three-dimensional bubble. 
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The force given by [A.3] can be assumed to apply to a "thin slice" of a three-dimensional bubble. 
To obtain the total force [A.3] is integrated over the surface of the spherical bubble to approximate 
the net force. Assuming that [A.3] applies over each "slice" of the sphere shown in figure A2 
(i.e. neglecting end effects) the integrated wall force, Fw, can be evaluated from 

Fw = ~ ( z )  dz. [A.71 
-- R b 

The integration of [A.7] can be greatly facilitated by noting that on the surface of the sphere the 
following relation is valid: 

R 2 + z 2 = R~. [A.81 

Using [A.8] to change the independent variable from z to Ro in [A.7] gives: 

fo ~b Ro dRo 
Fw = 2 ~v (Ro) x ~ b  -- Ro 2 

Substituting [A.3] and [A.5] into [A.7] and performing the integration yields: 

[A.9] 

Fw = 4ripe U 2 [  ~"+ 2Rg+ 2(3--U - uc) 
l 2y~U 

Here 2, is a constant given by 

it. = 

+ R"+413U ua) n+4 b I - -  

4,a+=u 

asR~ 
4y0 3 

D 2 n + 3 ( 3 U  UG)21 2n + 3 ~t..b 

8yo~+lU 2 

r~ ("l~t2 (n -- 2i -- 1) 
n ----2~ , if n is even 

,=o n - - ~  ' 
if n is odd. 

[A.10] 

Figure A3. Grid used for flow past a bubble near a wall. 
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Near the wall, where the wall-force is important, the liquid velocity is small compared with the 
relative velocity due to the no-slip condition at the wall. Using the above observation and 
substituting the relations: U = - UR, 3U -- u~ = --4UR -- UL -~ --4UR into [A.10] yields: 

/2: Dn+2 3 z~n+4 ~,5R 5 2~,2n + 3 R~ + 3'~ 4 ~  U 2/. ""n+2~t 'b .t- r"n+4"/'b 
Fw= ,'L R\ -- 4y0 / .  [ A . 1 1 ]  

The closure law required for a two-fluid model is a volumetric force and, therefore, [A.11] must 
be divided by the effective volume occupied by the bubble. For consistency with other models used 
in this analysis a cell model was assumed. The effective volume occupied by the bubble was 
determined from the definition of the local void fraction: 

where 

v~ 
Var' 

VG 4 3 = ~tRb. 

Dividing [A.11] by V=e~, the volumetric wall-force, M °v), is evaluated as 

/'Rb '~n+2 3,3,5 ( R b y  /R \2n+,] MCw)=ePLU2162"+2(RbY+Rb L \Yo] 32"'4~-~o) 4 k,~oo,/ --6A2"+3~bo b) " [A.12] 

The wall-force given in [A. 12] was derived using several simplifying assumptions (e.g. inviseid flow 
theory) and therefore it cannot be directly used to calculate the repelling force, but only to give 
the appropriate form of the wall-force closure law. In order to evaluate the exponent, n, in [A. 12], 
a Taylor series expansion of the term in the brackets was performed. The resulting constants were 
evaluated by comparison to a three-dimensional direct numerical simulation of viscous flow past 
a single bubble. Expanding the bracketed term in [A.12] about Y0 = Rb gives: 

[ 6 2 , + 2 ( R b y . . 2  ['Rb'~ "+2 3~5ltRb'~ 3 {Rb'~ 2"+'] 
+ '  , + 4 ~ , - ~ o ) - - ~ -  ~ 0 )  - 622- 3 ~,-~-0 / J L \Yo/  + 

\Yo/  \Yo/  
[A.13] 
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Combining [A.12] and [A.13] yields: 

MO'V)=6pLU2[Cwl.2i-Cw2(-~o).3L Rb Cw3(Rb~2-~ -' '  \Yol ] '}. [A. 14] 

In order to evaluate the constants in [A.14] the PHOENICS computer code (Spalding 1986) was 
used to model three-dimensional viscous flow around a bubble near a wall. A schematic of the grid 
used is shown in figure A3. The resulting pressure field was integrated over the surface of the bubble 
giving the wall-force. A uniform inlet flow was used so that lift-forces due to gradients in the liquid 
velocity field would be avoided. The resulting wall-force for two relative velocities (U R = 0.1 and 
0.2 m/s) is shown in figure A4. 

The first two terms in [A. 14] were found to satisfactorily fit the numerical results. The wall-force 
closure law used in the analysis of laminar bubbly flow is given by 

where 

and 

6oL U~ I- 

Cwl = -0.06UR - 0.104 

Cw2 = 0.147. 

This model of the wall-force is compared 
agreement can be noted. 

[A.15] 

against the numerical results in figure A4. Good 

A P P E N D I X  B 

Derivation of the Radial Pressure Distribution 

The radial lift-force and wall-force can be eliminated by adding together [4a] and [4b], resulting in 

6Vpc + (1 - QVpL = V" [(1 - 6)'[ L "3 !- ~T)]  ..~ (eLi -- PL)V( 1 -- 6) 

--ZLi'V(l--6)+6pGg+(l--QpLg. [B.1] 

The radial component of [B.1] is 

dpL f63pG dPLX~ d 
-~r-r -.]-6t.Tr dr i=-~-r[(l--6)Tl.rr]--(PLi--pg)~-rr-[-TLirr~-rr . [B.2]  

The interracial momentum jump condition for spherical bubbles can be written as 

2a 
Lirr • PG--PL ~b "[- (PLi -- PL) - '~T [B.3] 

Here Rb is the radius of the bubble and a is the surface tension. Differentiating [B.3] and combining 
with [B.2] yields: 

dpg 63 63 [6 (PLi--PL)] 63 (6"~ Tirr ) [8.4] 
dr = dr [(1 -- QzT ] dr + dr 

Integrating [8.4] yields: 

PL --Pgef = (1 -- 6)'C~,, -- 6(eLi-  PL) + 6~'Tirr " [B.5]  

Here PRcf is a constant of integration which was arbitrarily set equal to zero. Using [9] and [10] 
and setting xT equal to the bubble-induced turbulence level on the surface of the sphere results 
in the following expression for local liquid phase pressure: 

PL ~--" --~-06pL(UG - -  UL) 2 - -  1 6 2 p L ( U G  - -  UL) 2" [B.6]  

In contrast, if the interracial turbulence term is set equal to zero, the resulting local liquid phase 
pressure is given by 

PL = ~6(1 -- E)pL(U~ -- UL) 2. [B.7] 


